Zobrazit vše

Časové řady

Kurz je zaměřen na predikci časových řad.
Úroveň
Určeno účastníkům se základními znalostmi a zkušenostmi
středně pokročilý
Délka kurzu
1 den
Jazyk
 cz  eu
Kód kurzu
KT21110287
Machine learning
Kategorie:
Chcete tento kurz na míru pro vaši firmu? Kontaktujte nás

Kurzy v konkrétním termínu s živým lektorem

Termín
Jazyk
Místo
Forma
?
Jak a kde kurz probíhá.
Cena bez DPH
21. 01. 2022 09:00 - 17:00
Jazyk
Místo
Praha
Forma
učebna
?
Kurz probíhá prezenčně v učebně s lektorem.
Kód vybraného kurzu: KT21110287-0005
Cena bez DPH
3 990 Kč
21. 01. 2022 09:00 - 17:00
Jazyk
Místo
Praha
Forma
učebna
?
Kurz probíhá prezenčně v učebně s lektorem.
Kód vybraného kurzu: KT21110287-0006
Cena bez DPH
3 990 Kč
Otevřený termín
Jazyk
Místo
Praha
Forma
učebna
?
Kurz probíhá prezenčně v učebně s lektorem.
Kód vybraného kurzu: KT21110287-0003
Cena bez DPH
3 990 Kč
Otevřený termín
Jazyk
Místo
Praha
Forma
učebna
?
Kurz probíhá prezenčně v učebně s lektorem.
Kód vybraného kurzu: KT21110287-0004
Cena bez DPH
3 990 Kč

Chcete tento kurz na míru pro vaši firmu?

Kontaktujte nás

Popis kurzu

V první části se účastníci seznámí se standardními postupy při modelování a predikci časových řad a vyzkouší si jednoduché postupy na ukázkových příkladech. V další části budou vysvětleny metody strojového učení aplikovatelné při predikci časových řad. Účastníci si vyzkouší sestavit a natrénovat model schopný predikovat složitější časovou řadu z historických dat a ověří schopnost modelu predikovat budoucnost.
 

Požadované znalosti

  • Základní znalost programování v Pythonu
  • Středoškolské znalosti lineární algebry, matematické analýzy a teorie pravděpodobnosti. Bude předpokládáno základní porozumění pojmům jako vektor, matice, vektorový prostor, pravděpodobnost, podmíněná pravděpodobnost, nezávislost náhodných jevů a znalost násobení matic a derivace funkcí.
  • Znalosti strojového učení na úrovni kurzu Úvod do strojového učení.

Obsah kurzu

  • Úvod do teorie časových řad
  • Vybrané postupy modelovaní časových řad (časová a frekvenční doména, spektrální analýza, autokorelace, modely časových řad (ARIMA apod.)
  • Praktický příklad (pandas, základní charakteristiky, jednoduchá predikce)
  • Metody strojového učení pro časové řady (state space metody, hidden markov model, kalman filter, dopředné neuronové sítě, rekurentní neuronové sítě, LSTM)
  • Praktické příklady ilustrující sílu strojového učení (příprava trénovací množiny dle typu úlohy a zvoleného modelu, trénovaní a evaluace)
  • Komplexní scénář predikce časové řady pomocí rekurentní sítě (predikce teploty z vícerozměných vstupních dat: sběr a příprava trénovací množiny, trénování a validace modelu, predikování pomocí naučené sítě)

Lektoři

 Dušan Fedorčák
Dušan Fedorčák

Oblasti strojového učení se věnuje více než 10 let. Během svého působení v akademické sféře se zabýval samoorganizací, strojovým učením bez učitele, predikcí časových řad a modelováním dopravy. Od roku 2014 se pohybuje na startupové scéně (GoodAI – výzkum obecné umělé inteligence, Neuron Soundware – zpracování zvuku, CEAI – fintech & NLP).

Předchozí kurzy

 

Chcete tento kurz na míru pro vaši firmu?

Kontaktujte nás

Proč s námi